
ECM® 2001+是ECM2001的升級產(chǎn)品,屬于一臺多功能的細(xì)胞電融合和電穿孔儀器。ECM® 2001+能夠快速高效制備雜交瘤細(xì)胞和進(jìn)行核移植操作。獨特的交流正弦波使細(xì)胞在雙向電泳作用下排列到一起,然后在微秒級時間內(nèi)轉(zhuǎn)換成直流方波使其融合,融合后又一個短暫的交流脈沖穩(wěn)定雜合細(xì)胞的融合狀態(tài),大大提高了細(xì)胞融合的效率。相對于ECM2001,交流頻率可調(diào)節(jié)范圍更大,使電融合效率更高。
ECM® 2001單獨發(fā)生直流方波脈沖,可作為電穿孔系統(tǒng),結(jié)合多種專業(yè)電極,適用于各種要求的電穿孔實驗,廣泛用于離體和活體電穿孔。
特點:
· AC 頻率可調(diào)節(jié) 0.2 – 2.0 MHz
· 直流方波脈沖可單獨作為電穿孔系統(tǒng)
· 電壓調(diào)節(jié)范圍在5 V 到 3000 V
· 電壓調(diào)節(jié)分辨率更高
· 一個程序可設(shè)置多個AC步驟
· 低電阻下也能操作
· 7寸觸摸屏操作,界面直觀方便
多功能
兼有細(xì)胞電融合和電穿孔功能,滿足從簡單轉(zhuǎn)染到細(xì)胞融合一系列實驗操作。
靈活性
擁有較寬的電壓和脈沖時間范圍,可根據(jù)實驗方案調(diào)整所有脈沖參數(shù),可在8Ω低阻抗下操作;融合過程在顯微鏡下可視操作,提高細(xì)胞融合精度。
快速高效
通過交流非正弦波和直流方波電脈沖的交替作用,可以簡單而快速地完成細(xì)胞排列、融合、融合后處理全過程,僅需幾秒鐘。
**性能
電弧淬滅功能,降低電弧引起的損害;短路保護,避免脈沖發(fā)生器遇到短路時被損壞。
兼容性
除35mm培養(yǎng)皿電極之外的其他所有BTX電極, 可配2ml和9ml電融合池,提高效率。Enhancer3000監(jiān)測系統(tǒng),腳控開關(guān)
監(jiān)控儀選配
Enhancer 3000可以允許用戶監(jiān)控和記錄主要的電流參數(shù),利用選配的通訊模塊,可以把數(shù)據(jù)下載到電腦上或在打印機上打印出來。
應(yīng)用
動物細(xì)胞融合
核轉(zhuǎn)移
胚胎操作
雜交瘤生成
植物原生質(zhì)體融合
活體/離體/卵內(nèi)基因或drug導(dǎo)入
動物細(xì)胞或組織的轉(zhuǎn)染
干細(xì)胞生成
部分原核生物(bacteria)、酵母的轉(zhuǎn)化
技術(shù)參數(shù) |
|||
交流參數(shù) |
獨特的非正弦波形 |
||
頻率 |
0.2-2MHz 0.1 MHz分辨率 |
||
電壓 |
5-75V |
||
脈沖時間 |
0-99 sec |
||
融合后電壓 |
5-75V |
||
融合后時間 |
0-99 sec |
||
直流參數(shù) |
方波 |
||
高壓模式 |
電壓 |
505-3000V,1V調(diào)進(jìn) |
|
波長 |
10-600μsec,1μsec分辨率 |
||
低壓模式 |
電壓 |
5-500V,1V調(diào)進(jìn) |
|
波長 |
1-999msec,1msec分辨率 |
||
脈沖數(shù) |
1-9個 |
||
脈沖間隔 |
0.1-10 sec |
||
循環(huán)數(shù)0-99個 |
已發(fā)表文獻(xiàn):
Kim, GA, et al. (2017). Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res. 2017 Aug;26(4): 435-445. doi: 10.1007/s11248-017-0021-6. Epub 2017 May 28.
Sper RB, et al. Generation of a Stable Transgenic Swine Model Expressing a Porcine Histone 2B-eGFP Fusion Protein for Cell Tracking and Chromosome Dynamics Studies. PLoS One. 2017;12(1): e0169242.
Xie Z, et al. Optimization of a CRISPR/Cas9-mediated Knock-in Strategy at the Porcine Rosa26 Locus in Porcine Foetal Fibroblasts. Sci Rep. 2017 Jun;7: 3036. doi: 10.1038/s41598-017-02785-y.
An L, et al. Efficient Generation of FVII Gene Knockout Mice using CRISPR/Cas9 Nuclease and Truncated Guided RNAs. Sci Rep. 2016;6: 25199. doi;10.1038/srep25199.
Bakhshi PK, Bain J, Gul MO, Stride E, Edirisinghe M, Staniland SS. Manufacturing Man‐Made Magnetosomes: High‐Throughput In Situ Synthesis of Biomimetic Magnetite Loaded Nanovesicles. Macromol Biosci. 2016;16: 1555-1561.
Huan, YJ, et al. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos. Journal of Reproduction and Development. J Reprod Dec. 2016 Feb;62(1): 71-77.
Jeong, YH, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination.Zygote. 2016;24(3): 442-456.
Lu D, et al. Large-Scale Production of Functional Human Lysozyme from Marker-Free Transgenic Cloned Cows. Sci Rep. 2016;6: 22947. doi: 10.1038/srep22947.
Sun, Y, et al. Deletion of a Yci1 domain protein of Candida albicans allows homothallic mating in MTL heterozygous cells. mBio. 2016 Apr;7(2): e00465-16.
Natalie J, et al. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. J Clin Invest. 2016 Apr;126(4): 1482-1494.
Wang K, et al. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-Directed Repair. Mol TherNucleic Acids, 2016 Nov;5(11): e396.
Mangan, PR, et al. Dual inhibition of interleukin-23 and interleukin-17 offers superior efficacy in mouse models of autoimmunity. J Pharmacol Exp Ther. 2015 Aug;354(2), 152-165.
Ruiz N, et al. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One. 2015 Jun; 10(6): e0130008.
Wang, K, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep. 2015 Nov;13(5): 16623.
Wang Y, et al. MiR-499 Enhances the Cisplatin Sensitivity of Esophageal Carcinoma Cell Lines by Targeting DNA Polymerase β. Cell Physiol Biochem. 2015;36: 1587-1596.
Wu H, et al. TALE Nickase-Mediated SP110 Knockin Endows Cattle with Increased Resistance to Tuberculosis. Proc Natl Acad Sci USA. 2015 Mar;112(13): E1530-1539.
Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2015 Sep;199(6) :2030-2042.
Lai CW, et al. FTSJ2, a Heat Shock-Inducible Mitochondrial Protein, Suppresses Cell Invasion and Migration. PLoS One. 2014 Mar; 9(3): e90818.
Zhang Y, Luo W, Wang Y, Liu Y, and Zheng, L. Purified dendritic cell-tumor fusion hybrids supplemented with non-adherent dendritic cells fraction are superior activators of antitumor immunity. PLoS One, 2014;9(1), e86772.
Liu X, et al. Zinc-Finger Nickase-Mediated Insertion of the Lysostaphin Gene into the Beta-Casein Locus in Cloned Cows. Nat Comm. 2013;4: 2565.
Tan, C, et al. Impact of anti-CD25 monoclonal antibody on dendritic cell-tumor fusion vaccine efficacy in a murine melanoma model. J Transl Med. 2013 Jun;11: 148.
Wang Y, et al. Mir-655 Up-Regulation Suppresses Cell Invasion by Targeting Pituitary Tumor-Transforming Gene-1 in Esophageal Squamous Cell Carcinoma. J Transl Med. 2013;11: 301.
Clow A, Gaynor P, Oback, B. A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion. Biomed Microdevices. 2010 Oct;12(5): 777-786.